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ABSTRACT

The transient evolution of internal waves which are forced by the flow of stably stratified fluid over two-
dimensional topography exhibits several pronounced nonlinear effects for geophysically relevant values
of the governing parameters. For homogeneous flows in which the internal Froude number is constant, the
importance of nonlinearity is determined by the aspect ratio of the topography and the flow in the steady-state
regime is as predicted by Long’s model. When the background flow is inhomogeneous, Long’s model no
longer applies and new nonlinear effects may occur, One example of such an effect is the marked increase
in the efficiency with which resonant lee waves are excited beyond the linear efficiency. A second example
concerns the possibility of the trapping and subsequent amplification of the internal wave beneath its own
level of supercritical steepening. The latter process appears to be important in understanding the strong
downslope windstorm which occurred at Boulder, Colorado, on 11 January 1972.

1. Introduction

In a recent article (Clark and Peltier, 1977; here-
after called I) we described an initial investigation
of the temporal evolution of internal waves forced by
finite aspect ratio topography. Our analysis was re-
stricted to consideration of homogeneous back-
ground flows and the purpose of the present article
is to extend the work to encompass inhomogeneous
models in which the characteristics of the nonlinear
development may be complex. We shall also recon-
sider our earlier time-dependent solutions to the
homogeneous problem in the light of Long’s model.

We showed in I, by direct numerical simulation,
that the freely propagating disturbance initiated by
stratified flow over an isolated obstacle exhibited
arather sharp transition in the nature of its temporal
development when the aspect ratio of the topog-
raphy A = h/a (h = height; a = halfwidth) ex-
ceeded a critical value A.. The numerical evidence
for this transition was obtained by analysis of the
evolution of forced waves in a homogeneous flow
with constant Brunt-Viisili frequency and uniform
horizontal wind. The solution of this simple non-
linear initial value problem is entirely determined
by two nondimensional parameters if the Reynolds

! Alfred P. Sloan Foundation Fellow. Permanent affiliation:
Department of Physics, University of Toronto, Toronto, Ontario,
Canada MSS-1A7.

0022-4928/79/081498-32$12.00
© 1979 American Meteorological Society

number is infinite. These parameters are the aspect
ratio A and the Froude number Fr = a*N¥U?
(N = Brunt-Viisald frequency; U = background
wind speed) which determines whether the forced
disturbance will be freely propagating or evanescent.
For Fr > O(1) the response is in the internal wave
regime and it is in this regime that the sharp transi-
tion was found. With Fr > 1 and A > A_, the wave
drag on the surface was found to amplify continu-
ously (and linearly) in time, eventually obtaining
values which exceeded the linear prediction for the
same parameters by several hundred percent. The
critical aspect ratio beyond which the apparent in-
stability was realized was found to agree well with
an a posteriori prediction based upon linear steady-
state theory, at least for the single flow investigated
in I (for which the critical aspect ratio was small).

For fixed Fr, A, is the aspect ratio such that there
exists a streamline within the first vertical wave-
length of the standing wave structure which locally
achieves a vertical orientation. If this critical con-
dition is exceeded, it is normally associated with the
formation of ‘‘rotors’’ in the region of reversed
streamlines (e.g., Miles, 1969; Long, 1972), the flow
in this vicinity being locally unstable against con-
vection. The ‘‘breaking’’ of the internal wave is
synonymous with the release of this local secondary
instability. That this critical aspect ratio should also
mark an abrupt transition in the flow from states
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(A < A) in which the surface drag is close to that
predicted by linear theory to new states (A > A,) in
which the surface drag is very much in excess of the
linear prediction, is not immediately obvious.

The first idea we wish to explore in the present
paper concerns this apparent connection between
states of high surface drag and states in which super-
critical steepening of the streamlines occurs. This
connection, which is most readily seen in terms of
Long’s model, is extremely important to the phe-
nomenon of strong downslope windstorms. In the
high-drag state, the strength of the downslope flow
in the lee of the mountain is-very much stronger
than would be predicted by linear theory. Non-
linearity may therefore be very important to the
mechanics of the windstorm phenomenon to the ex-
tent that it completely dominates other effects.

In the theory of downslope windstorms recently
advanced by Klemp and Lilly (1975), the mechanics
of the phenomenon are basically linear. They sug-
gest that a strong surface response occurs whenever
the mean vertical wavelength of the disturbance is
such that the distance between the ground and the
tropopause is an integral number of half-wavelengths
(see also Blumen, 1970; Blumen and McGregor,
1976). Under such conditions there is constructive
interference between the direct wave from the sur-
face and the partial reflection from the tropopause
and a modest increase in the surface response. In
their view, then, the occurrence of a windstorm
demands a rather special tuning of the mean flow
parameters [essentially N(z), U(z) since they assume
Fr > 1 and use completely hydrostatic models to
describe the wave field].

Our preliminary nonlinear results in I demonstrat-
ing the sharpness of the transition from the regime
in which linear theory is valid to that in which the
nonlinearity of the lower boundary condition is very
important, were clouded to a certain extent for
several reasons. First, in the supercritical regime
where the disturbance is amplifying, we introduced
locally enhanced diffusivity for both heat and
momentum in the vicinity of the wave-induced crit-
ical “‘level”’ (remember that the high-drag state is
characterized by supercritically steepened stream-
lines; because the region of reversed streamlines
is also a region of reversal of the local wind direc-
tion we shall refer to it as a critical ‘‘level’” in the
flow). This was done in an attempt to parameterize
the effect of small-scale convection which we as-
sumed to be associated with the locally super-
adiabatic temperature gradient. A simple first-
order closure scheme (Smagorinski, 1963; Lilly,
1962) was employed to estimate the turbulence in-
tensity. It might be argued that the strong amplifica-
tionfor A > A, was a consequence of the turbulence
parameterization, the physical basis of which is
questionable. Second, we did not show explicit com-
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parisons of the effect of resolution on the solutions
nor did we illustrate that the results were insensitive
to the location of the lateral boundaries with respect
to the domain interior. Rather, we simply stated that
the required calculations had been performed and
that the results were negative (i.e., the solutions
were insensitive to such variations). A further and
equally important question which one might legiti-
mately raise concerns the relevance of this strong
nonlinearity to actual atmospheric flows which are
quite unlike the simple homogeneous flows dis-
cussed in I.

In the present paper we have attempted to resolve
each of these issues in turn and to explore in detail
the various other sources of nonlinearity which may
obtain in nonhomogeneous flows. All of these effects
contribute to the determination of the intensity of the
wind speed to the lee of the topographic maximum.
In Section 2 a simple, linear, inhomogeneous steady-
state model is described which we have used for
control on the full nonlinear time-dependent cal-
culations. In Section 3 we provide a summary
description of the nonlinear, nonhydrostatic, nu-
merical model for completeness. However, since
most of the description has been published else-
where (Clark, 1977; Clark and Peltier, 1977) the dis-
cussion is brief and confined to a statement of the
basic equations and of the alterations of the model
which were necessary for the present calculations.

In Section 4 we will discuss the nonlinear effects
which occur in homogeneous flows through a more
detailed analysis of that considered in I. We will
compare the time-dependent numerical solutions in
the long time limit both to the prediction of linear
steady-state theory and to the results expected from
Long’s model. The reason for the rather sharp tran-
sition between the low-drag and high-drag states for
A = A, will be discussed in detail.

In Section 5 we consider the response of a model
atmosphere in which the vertical variations of wind
speed and stability are those appropriate to ‘‘stand-
ard”’ midlatitude winter conditions. We use the linear
inhomogeneous model to obtain an upper bound on
the critical aspect ratio and show thereby that the
high-drag regime should be typical of the topog-
raphy associated with the Canadian and U.S. Rocky
Mountains. We then use the nonlinear time-depend-
ent model to calculate the evolution of the wave
field for both A = A,.. For A > A, the nonlinear in-
crease of the wave drag and the associated increase
in the downslope wind speed are the same as in the
homogeneous model.

In Section 6 we describe the evolution of the wave
field in a third model atmosphere which differs from
the standard winter case mainly in that the jet is more
intense. When it is subject to the same bell-shaped
forcing, this atmosphere supports a strong linear
resonant ‘‘lee wave.’’ Such trapped disturbances are
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a common atmospheric occurrence and are respon-
sible for the regularly spaced cloud bands which are
often seen in satellite photographs to lie parallel to
the ridge downstream of the topography. Since such
_ disturbances are intrinsically nonhydrostatic and
since their nonlinear time-dependent description
places severe strains on a finite-difference model,
we will use our simulation of them as further evi-
dence of the fidelity of the model. Such modes have
not previously been simulated numerically in a
model which has a nonreflecting upper boundary
condition. The effect of nonlinearity upon the ef-
ficiency with which they are generated turns out to
be extremely important and in the sense of strongly
increasing the lee wave amplitude above that which
would be predicted by linear theory.

In Section 7 we compare the predictions of the
nonlinear time-dependent model with observations
of the 11 January 1972 severe windstorm in Boulder,
Colorado, described by Lilly and Zipser (1972). The
observed upstream conditions during this storm
differ from those employed for the lee wave simula-
tion only in that the stratospheric wind speed has a
magnitude of 20 m s™! in accord with the observa-
tions rather than 30 m s~!. With this modification
of the background wind speed in the upper levels, the
solution undergoes a drastic change of character
since the internal wave now breaks in the lower
stratosphere. Subsequent to wave breaking the
tropospheric flow develops strongly and the final
deflection of the tropopause is such that it exceeds
the mountain height by approximately a factor of 3.
We’'comment upon the nature of the nonlinearity
which supports the accompanying dramatic devel-
opment of the downslope windstorm.

In conclusion, in Section 8 we summarize the main
results which have been obtained to date and we
briefly discuss their implications to the problem of
parameterizing the effect of mountain wave drag in
atmospheric general circulation models (Lilly, 1972).

2. A linear, inhomogeneous, steady-state model

This model will be employed for control on the
nonlinear time-dependent calculations to be de-
scribed in later sections. It is the simplest linear
steady-state model which is capable of accurately
describing the structure of mountain wave disturb-
ances in an inhomogeneous flow and employs what
have come t6 be called ‘‘multiple-layer’” methods.
The background state of the atmosphere is ap-
proximated by a stack of layers in each of which the
wind speed and temperature are constant. It is well
known that this approximation is adequate to the
extent that the local vertical wavelength is every-
where much greater than the layer thickness. Since
this method is reasonably well known (e.g., Hines
and Reddy, 1967) we will describe our implementa-
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tion of it as briefly as possible and will forego deriva-
tion of the linearized field equations upon which it is
based since these are equally well established.
In the mth layer the horizontal wavenumber
domain form of the steady-state solution for the
perturbation y/’ of the variable ¢ has the form

Um o explikx + sy = ik, n(z ~

Zm-Dl, (D)

where s,, = Y2H,, and H,, is the isothermal scale
height in the mth layer. The quantity z,, is the height
z to the top of the mth layer in the absence of a wave
and k, , is the vertical wavenumber of the wave in
layer m which is determined by the dispersion
relation

2

k. = Wg,m
2,m ( Q?n
In Eq. (2) wy,n is the isothermal Brunt-Viisila fre-
quency in layer m, Q,, = kU,, is the intrinsic fre-
quency of the wave, w,,,, = gv/2c,, is the acoustic
cutoff frequency and c,, is the sound speed. If w,, is
the complex amplitude of the vertical velocity per-
turbation in k-space, then the following polarization
relations connect the Fourier amplitudes of the other
variables to it: .

Qulxyk,m — i(1 — y/2)/H,]

2
W4 m

Q2 -

ch

- 1)k2 + )

B = pr— Wh (Ga)
2 (T — i H — 2
5o = Ohhen = ) + iy = Dgt o
Q,.(Q2% — k%%) \
@ = ~ (ke /Yy @30)

where p,., p and it,, respectively describe the pertur-
bation pressure, density and horizontal velocity
amplitudes in the mth layer and in the horizontal
wavenumber domain. The upper and lower signs in
(3) correspond to the upper and lower signs in (1)
and thus denote the upward and downward prop-
agating waves in each layer of the stack. On each
of the interior layer boundaries we require con-
tinuity of the displacement so that w/{) must be
continuous across all such interfaces. This kinematic
condition must be supplemented by the dynamic
requirement for continuity of the normal stress -
across the perturbed interface. This lelads (e.g., see
Hines and Reddy, 1967) to the demand that the quan-
tity x = (da/dx + Ow/dz)Q2~! be continuous across
the unperturbed interface. If A, and B,, are the
amplitudes-of the upgoing and downgoing waves in
the mth layer, i.e.,
wm — w;l + w;l - esm(z—-zm_l)[Ameikz,m(z—zm—l)

+ Bmeikz,m(z—zm_;)]eik.z-’

C))

then application of the two interfacial boundary

‘conditions leads to a so-called transmission matrix
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relation connecting the coefficients A, 11, Bnyy to
. A, B,,. The explicit form of this relation is

Am thm Am
[ } o nllmer [Eml[ ] )
By 2iQ,M 4 B
where the transmission matrix E,, is
[E,] = I:(El,l)m (51,2)m:l , (6)
(e2,0m (€2,2)m

the individual elements of which are
(el,l)m = Qm+leikz,mdm —Pmeikzym(lm

(GI,Z)m = Qm+le-ik2‘"‘d’" - Qme_ikz.mdm

(62,1)”[ =Pm+1eikz,mdm + Pmeikz,,,,dm

)

(€22)m = —Ppyje—entdn 4 O o=ikemdn

In Egs. (5)-(7) we have used the following defini-
tions: h,, = exp(spdn), dm = 2y — Zpo1, M = k, Q¥
(k*c? — 0%, N = (k¢ — sQ/(k%* -~ ), P=N
—iM, Q = P*. From (5) it therefore follows that
the coefficients in layer m + 1 are related to those
in layer r(r < m) by

Apy A,
= frar , 8
(] =7y ®
where
o hy,
=1l 9)

j=r 20, My,
and the “‘propagator matrix’’ A’ is
[AF] = [(51,1)5" (51,2)'}‘J
G (Bua)y |
= [E,] '[Em—1] e [EL (10)

To complete the solution we have yet to specify
the upper and lower boundary conditions. The kine-
matic condition at the lower boundary requires

wiz =0)=A, + B, =ikUz(k), (11)
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where z(k) is the wavenumber spectrum of the

surface topography z(x), and U, is the background

velocity in the lowest layer near the surface. The
topmost layer in the stack is a half-space in which
the background wind and temperature are assumed
to be constant. In this region the perturbation
energy flux must be outgoing, i.e., the Sommerfeld
condition applies. If we call the upper half-space
region n then this requires B, = 0 and from (8) with
r = 1 we obtain the following relation between A,
and (A,,B)):

[An:‘ :fn_,l(&,l)'f_l (51,2){1_1}{141
0 LGt (Bt LB,

so that in addition to (11) we have the second
constraint on (A,,B,) that

(02,1 7"AL + (822)17'B, = 0.

} . a2

(13)

Combining (11) and (13) we obtain the following
explicit expressions for A, and B,:

—(8y,2)171 -
A, = - (z=10), (14a)
T G = G :
B, = (@)1 Wiz = 0). (14b)

(B, )it — (B!

With A, and B, now determined we obtain the w
field everywhere by substituting (8) into (4). Given
w(k,z) determined in this fashion we may deduce the

field w(x,z) by evaluation of the Fourier inversion

integral.

It is more useful for our present purposes, how-
ever, to express the solution in terms of the ‘‘free
stream deflection’’ &(x,z) as in 1. Since by defini-
tion w(x,z) = dé(x,z)/dt, we then have Ww(k,z)
= ikU(2)&(k,z) to first order in deviations from the
background hydrostatic equilibrium configuration.
The complete solution for the ¢ field in layer m
is thus

o Ameikz,m(Z—Zm—l) + Bme*ikz,m(z—Zm—l)

ewzdk | | (15)

fm(xyz) = Re{'n‘—les"l(z_zm—l) J

0

where Re indicates ‘‘the real part of’. This may be
rewritten in the conventional form
* fik,z)

= S pikx
&(x,2) Rer Ck) FE0) e dk] ,  (16)

where the secular function f(k,0) is just

Fk,0) = o)1t — (8220170 an
The zeros of the secular function are poles of the
integrand in (16) when this is considered as a

function of complex k. Poles which lie just off the
real k axis are extremely important in the mountain

ikU,,

wave problem since these ‘‘leaky modes’’ are inti-
mately related to the so-called lee waves about
which we shall have more to say in later sections.
Poles which lie on the real axis may be treated

- analytically (e.g., as in Vergeiner, 1971) although

such singularities are not important in any of the
model calculations which we shall describe here.
Poles which lie just off the real axis contribute
sharp resonant lines to the spectrum of the solu-
tion [e.g., the integrand of Eq. (16)] but these pre-
sent no difficulty if the spectrum is sampled at
sufficiently small Ak and the integral (16) may be
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evaluated by direct FFT since the spectrum is band-
limited. Given £(x,z) for the steady-state response
‘determined in' this fashion, there are several char-
acterizations of the solution which we will require

in later sections and these are listed for convenience

as follows:

a. The mass flux streamfunction ¢(x,z)

This function is defined such that pou = 8¢/5z
and pow = —ad¢/0x, where u(x,z) and w(x,z) are the
total horizontal and vertical components of veloc-
ity, respectively. Using w = U(z)(9&(x,z)/dx), then

on the assumption of no upstream influence we have

d(x,z) = = €(x,2) py(2) U(2) +r U(z")po(z')dz". (18)

\ ' i 70
b. Horizontal wind perturbation u’ = u ~ U -

This parameter may be obtained by direct inte-
gration of the anelastic form of the continuity
equation under the assumption of no upstream in-
fluence. The result is

0 oU i}
uf A ; )

u'(x,z) =

¢. The downslope wind amplification factor M

This function provides a useful nondimensional
linear measure of the windstorm potential of a given
combination of mean flow and topography. It is
- simply (19) evaluated on the surface z = 0 and
normalized with respect to the surface wind
speed, i.e.,

M(x) = wx,0)
U
=('__6_§__£§~({_£_6_p£) 0)
oz U oz Po 0z /.=y

d. Stability indices I, and I,

- "These functions are critical to the analysis which
concerns us in the present paper. They provide two

alternative linear a posteriori estimates of the aspect -

‘ratio A, above which the mountain wave should
become unstable in some sense. For adiabatic flow
the two indices predict exactly the same A.. Under

- such conditions d6/dt = 0, where 8 is the potential -

temperature, and the steady-state linearized form of
this expression of the second law reduces to (with
= Ud¢lox)
' 00’ o¢ 9

90" | 9¢ 96 _ , @

ox ox 0z ‘
where 6,(z) is the background potential temperature
field and 6'(x,z) the deviation from it. Eq. (21) may
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be mtegrated once assuming no upstream influence
to give 0'(x,z) = —§(x,2)06,/0z and this may be dif-
ferentiated with respect to z to give

90'(x,2) 96, ¢ 6200

dz 0z 9z 8

- §x,2). (22)

Now locally the static stability of the free stream
will be completely eroded by the wave where
—00'/0z > 06,/0z and a local region of static in-
stability will be created. Therefore, defining

2
Ex,z) L
I(x z) = 9¢ + 9 (23)
9z aeo ’
62

in linear a posteriori condition for local convective

instability is '
{I(x,2)}max > 1, (24)

which reduces to the condition employed in paper 1
when the curvature of the 6,(z) profile vanishes as is
the case for uniform stratification. Since ¢ scales
linearly with the mountain height with all other
parameters fixed we may predict the critical moun-
tain height for which a region of instability will be
induced on the basis of a single caleulation of
&(x,2) as discussed in I.

~ An alternative to the stability index I,, which
predicts the same critical aspect ratio, follows from
the fact that for adiabatic frictionless flow the isen-
tropes are also streamlines. This is perhaps obvious
but can be seen directly by expanding the steady-
state adiabatic condition as ud6/dx + wab/dz
=0, where u=u'+U, 6=6"+ 06, w=w',
Substituting for # and w in terms of the fotal stream-
function we then obtain J(8,4) = 0, where J is the
Jacobian operator. Thus, ¢ and 8 are linearly de-
pendent and where I,(x,z) = 1 the streamlines are
vertical since 8¢/8z = (6, + 6')/9z = 0. Where
this condition is satisfied the horizontal wind van-
ishes. From (19) the condition for the horizontal
wind to vanish is just

and thus a second measure of instability to that
provided by I, is

{I(x, )} min < 0.

In fact (26) is preferable to (24) since it does not
involve the curvature of the basic state profiles and
so may be calculated to higher accuracy. This is par-
ticularly convenient when the basic state is known
only at a discrete set of sampling points and values
of the parameters elsewhere must be determined by
interpolation.

(26)
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The main point to note from the above discus-
sion is that in the steady-state mountain wave
problem, the region in which the background static
stability is erased by the wave is also the region
of reversed streamlines. In its supercritical state
the wave induces its own critical level and we call
this region a nonlinear critical level to emphasize
the fact that it exists in consequence of the existence
of the wave. The main question which concerns
us here is what happens to the mountain wave in
the course of its transient evolution as the critical
region is established while the disturbance propa-
gates upward from the lower boundary? Important
quantities in the analysis of the effects which
occur are the height z. above the surface at which
the critical region forms and the wave drag D,(0) on
the surface itself.

e. The height z. of the wave-induced critical level

Suppose we consider a bell-shaped topography
as in I with z(x) = a?h/(x% + a?), where h is the
mountain height and « its halfwidth. For a
homogeneous flow with constant background wind
- and stability the solution for the free-stream deflec-
tion &(x,z) is just

&é(x,z) = Re [ahez’z” J dk

0
X exp{—ak + ilkx + (kg% — kz)”zz]}} . @n

To the extent that the disturbance is hydrostatic
then the long-wave limit ko2 = N2/U? > k2 applies
and (27) may be evaluated as in Miles and Huppert
(1969) using Hilbert transforms. The result is

. a’h
(x,z) = me”ﬂ’ coskgz

— ahx e?2H

sinkgz,
(x* + a?) ¢

(28)

where £-(x,z) is the longwavelength approximation
to (27). Now the condition for instability of this
wave is just 9¢/8z > 1 and since (assuming H > z)

OLL _ —a*h

5 S kge® ™ sinkz
74

x2 +z

ahx
- m kGeMH COSk(;Z, (29)
we see that the local extrema of 3£4/9z are all
found immediately overhead of the mountain
(x = 0) and that the first steepening level occurs
where &gz, = 37/2 which is the first maximum of
(29) above the surface z = 0. The wave-induced
critical level is therefore located at a height 3A,/4
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above the surface (where N\, = 2x/k. is the vertical
wavelength of the wave) and this point is located
directly overhead of the topographic maximum
when the disturbance is linear and hydrostatic.
For an inhomogeneous flow in which the basic
wave is still strongly hydrostatic we may generalize
this result in the WKB limit to obtain
2e
f k(z')dz' = 3u/2 30)

0

which just states that the point at which the wave
is first expected to break is located at a height
z. such that the integrated phase shift between it and
the ground is 3#/2. Eq. (30) has provided a good
estimate of z,. for all of the flows which we shail
investigate here, even for those in which the non-
linearity is extreme.

f- The surface wave drag D'w(O)

Associated with the steady-state wave field (15)
there is a downstream pressure drop across the
topography and thus a force on the earth. This
force (per unit length of the topography) is just

“+o
u'w'dx

Dz =0) = "POJ €2

—w

which is just the negative of the Reynolds stress
evaluated on the -surface z = 0. The Eliassen-
Palm (1960) theorem assures us that so long as the
wave amplitude is small the Reynolds stress in the
interior will be nondivergent. Thus if the wave has
small amplitude, the mean flow will not be affected
by its transmission. Our interest here is in circum-
stances in which the wave amplitude is not small
and thus we are explicitly concerned with processes
that occur when the Eliassen-Palm theorem is
violated.

The linear model described above has proven to
be very useful in understanding the results ob-
tained from our nonlinear simulations and as a rela-
tively inexpensive tool for designing the experi-
ments themselves. It will be employed extensively
in later sections. We have tested this numerical
model by reproducing the results of the analytic
solution obtained in I for the homogeneous
atmosphere. The ¢(x,z) and w(x,z) fields are shown
in Figs. 1 and 2, respectively, for this model for
which the parameters are U =4 ms™!, 2/,
= 10.3min,a = 3km, 2 = 100 m. £(x,z) is deduced
by the FFT of the discretized spectrum as in (16),
and w(x,z) is deduced using centered finite differ-
ences on the ¢ field as in I. The surface drag was
calculated by evaluating the correlation (31) using
quadrature rather than the exact formula in I and
found to be 302.5 kg s~? which is within 1% of the
previous calculation with surface density p, = 1.276
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Fic. 1.
deflection &(x,z) based on linear inviscid theory. The dashed
contours are for ¢ negative and the solid for ¢ posmve The
parameters are 27/N = 10.2 min, U =4ms™!, a =3 km, A&
=100 m,

Contours of constant (steady-state) free-stream

kg m~3. Using either of the criteria (24) or (26) for
stability we again find that the critical mountain
height beyond which the flow becomes: unstable is
h, = 400 m so that the critical aspect ratio is A,
= 2is as previously.

Before proceeding with a discussion of the non-
linear time-dependent experlments we provide a
summary description in the next section of the
properties of the finite-difference model.

_ 3 The nonlinear time-dependent model

The numerical model employed in the calcula-
tions discussed in the following sections is based on
that described in detail in Clark (1977) and Clark

and Peltier (1977). The term dp/d¢ is dropped from-

the continuity equation and the resulting anelastic
system therefore does not support sound waves.
The equations of momentum conservation, con-
tinuity and internal energy conservation then be-
come, respeetively,

da
p—di——Vp +p'g + Ve, (32a)
V-(pu) = 0, (32b)
de
— =V'H, 32¢
b 7 (32¢)

where 7 is the stress tensor, H the heat flux vector,
and the remaining variables have their conventional
definitions. In (32) the thermodynamic variables
¥ = (p,p,T,0) have been separated into two com-
ponents ‘as § = Y(z) + Y'(x,f) where the overbar
denotes a- background state of hydrostatic equl-
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librium. In I we perturbed about a basic state
which was isentropic and the model thus consisted .
of the so-called ‘‘deep-equations’ of Ogura and
Philips (1962). Since the Brunt-Viisila frequency
N, where N? = (g/0)d6/dz, is such that N2 = 0 for
this -basic state, the model had to be initialized at
t =0 with y'(x, t+ = 0) = ¢'(z) in order that the
atmosphere be able to support the propagation of
internal waves. For the present applications this
approach must be rejected since we are interested
in studying the propagation of the gravity wave
through realistic atmospheres in which there are ex-
treme vertical variations of potential temperature
between the troposphere and the lower stratosphere.
If we were to write the perturbation equations in
terms of deviations from an isentropic state the
initial ¥'(z, t = 0) would have to be large and the
additional fluctuations associated with the wave
could be strongly;affected by truncation error.

To remedy this defect we have elected to re-
write the calculation in terms of deviations from a
hydrostatic reference state in which the potential
temperature profile 0(2) is an exponentlally increas-
ing function of z. To determine the inverse scale
height § of this profile we fit a least-squares straight
line to the data obtained from an upstream sound-
ing and constrain the fit to give the observed
potential temperature at the surface. The ﬁelds ¥
therefore have the explicit forms

0(z) = 6, exp(Sz), (33a)

(33b5

Sz __ 1 1/x
@) = pue-sen|esr - £ D]

cpTy S

g (e —1)
cpTy S

(1/x)—1
B(2) =p0e~SZ'K{eSz- ] . (330)

z(km)

FiG. 2. Contours of constant (steady-state) vertical velocity
wi(x,z) deduced from &(x,z) in Fig. 2.
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where p, and 6, are respectively the pressure and
potential temperature on z = 0; R = ¢, — ¢, is the
gas constant for dry air; ¢, and c, are the specific
heats at constant pressure and volume; and § is
the constant (so-called) stability. In deriving (33)
we have made use of the ideal gas equation of state

(33d)

p = pRT, (34a)
the definition of potential temperature
0 = T(plpo)™, (34b)

where « = Rlc,, and the condition for hydrostatic
balance
dp _
dz PE
Through a linearization of (34a,b) we may obtain
an expression for the density perturbation in (32a) as
v
'= —p— + —,
p Pot
where ¢? = yRT is the square of the adiabatic
sound speed which is clearly a function of z in the
background state. Substituting (35) into (32a) and
expanding 6 = 6(z) + 6'(x,1) we obtain a closed
system in two spatial dimensions for the four
variables 0', p', u, w.
The stress tensor 7;; in (32a) has the usual form

(34¢)

’

(35)

75 = PKuDi, (36)
where the deformation tensor D;; is just
Dj; = du; + du; — %30,4,8y;. 37
;I'he heat flux vector in (32c¢) has components
H, = pKn 2. (38)
ox;

In the viscous absorbing layer (see Fig. 3) we ad-
just # and H; such that diffusion acts only on
perturbations from the environmental state. Since
the reference state is not the upstream profile we
must still initialize ¢'(x,t) = ¢'(z, 7 =0) # 0 in
order to assimilate actual upstream radiosonde
observations. In I we allowed for the calculation of
K, through first-order closure and determined Ky
through the assumption of unit Prandtl number
Pr = K,/Ky = 1. In the present calculations this
option is invoked only in Section 7 where the
Boulder windstorm simulation is discussed. For
the majority of the calculations we have assumed
K, = Ky = 0(Sections4and 5)orK,, = Ky = con-
stant (small) as in Section 6 which concerns the
description of the evolution in time of a linear
resonant mode (lee wave).
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F16. 3. Domain for the time-dependent nonlinear simulations.

The hatched region denotes the volume in which dissipation is
artificially enhanced to prevent reflection.

{OUTFLOW) T

,._
=]
e

XXX
SR S AN

As discussed in I the important lower boundary
condition is dealt with effectively by transforming
the hydrodynamic equations from (x,2) to (%,2)
coordinates where (Gal-Chen and Sommerville,
1975)

X=X

(39)

Z - Zs(-x)
H — z(x)

In (39) H is the height of the numerical domain
and z,(x) the topography. The forms of the trans-
formed field equations are given explicitly in I and
the nonlinear time-dependent system is solved
numerically using standard methods described in
detail in Clark (1977).

The remaining boundaries of the numerical
domain are as important as the lower one. In Fig. 3
we show a schematic illustration of the region. At
the overhead boundary (marked IV in the figure) we
require an effective Sommerfeld condition which
prevents reflection from this surface. As in I, this is
effected by including a layer near the boundary
in which the dissipation is gradually enhanced
to a maximum at the boundary itself. The same
was done near the upstream boundary (marked I
in the figure) although this was not equally manda-
tory. At the outflow boundary we continue to em-
ploy a variant of the extrapolation scheme de-
scribed by Orlanski (1976) and have found this to
be an effective means of suppressing transient reflec-
tions from this region. For further details of the
numerical model the interested reader should con-
sult Clark (1977) and 1.

H

z

4. High-drag and low-drag regimes in a homogeneous
flow

In Fig. 4 we show the linear steady-state stream-
line pattern for the homogeneous model discussed
at the end of Section 2 and previously in 1. The
forcing topography is bell-shaped witha = 3 km and
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Fi1G. 4. Linear, steady-state, inviscid streamline pattern for the
homogeneous model. The height of the mountain is 25% super-
critical according to linear theory. Note that the first stream-
line reversal occurs at a height z, = 3),/4.

h =500m so that A exceeds A, by 25% (A,
= 400 m). For this supercritical aspect ratio linear
theory predicts that the streamline which ‘‘enters”’
at a height z. = 3\,/4 above the surface has a
slope which exceeds 90° directly over the mountain
peak (see Fig. 4). The Froude number Fr = N2a?
Uy = 60 so that the basic wave is moderately
hydrostatic while the aspect ratio A = % > A,
= 2%5. Note from the figure that there is a slight in-
crease in amplitude of the streamline deflection with
increasing z. This is a direct consequence of the de-
crease of density with height. In Fig. 5 we show the
nondimensional tangential wind speed perturbation
on the surface (M in Eq. (20)] for 4 = 500 m as a
function of horizontal position x (dashed line). Note
that this function has odd symmetry about x = 0
and its basic structure illustrates clearly the connec-
tion between the process of internal wave genera-
tion by topography and the downslope windstorm
phenomenon. However, linear theory predicts only
M. = 0.64 for A = % so that a ‘“*storm’’ as such
does not exist in the linear picture since um,, = 6.56
m s™! from upax = (Mpax + DU,. To generate a
storm we require a mechanism for increasing
M ., substantially.

Such a mechanism exists in the nonlinear
dynamics. To describe it we will begin by explor-
ing the characteristics of the flow which obtain for
the full nonlinear time-dependent problem. In Fig.
6 we show a sequence of time slices through the
evolving streamfield. The interior of the domain is
completely inviscid and the mesh is NAx-MAz,
where N = 182, M = 64, Ax = 600 m, Az = 100 m.
The time step At = 10 s. Notice from the final
frame shown in Fig. 6 that the streamline which
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enters at the height z, is supercritically steepened
in the region directly overhead of the mountain
peak in accord with the linear prediction (cf.
with Fig. 4).

In Fig. 7 we show the same time sequence of
the streamfield for the same flow on a higher resolu-
tion mesh for which Ax = 300 m and the other
parameters of the model are the same as above. For
these calculations the horizontal resolution is
double that employed for the calculation shown in
Fig. 6. Furthermore, since we employ the same
number of horizontal grid points as before the
lateral boundaries are now located only 27 km
distant from the center (as opposed to 54 km). We
note again that in the final frame a critically
steepened streamline exists at the height z. = 3A,/4
~ 1.836 km, so that the two calculations are in
qualitative accord in this respect.

We may quantify this resolution check by com-
paring the surface wave drag as a function of time
for the two calculations. This comparison is shown
in Fig. 8. Clearly, the two calculations are in close
agreement and we may therefore feel confident
that neither the resolution nor the nearness of the
lateral boundaries are affecting the outcome of the
experiment in any significant way. The dashed

Lo__
8 LONG'S MODEL
M 6
a
2
24 -8 -12 -6 6 12 18 24
(KM)
L
1-2
]
| ULINEAR THEORY
1
-4
1
]
I
!
o 1-8

Fi1G. 5. Downslope wind amplification factor M = «'/U for
bell-shaped topography with # = 500 m, a = 3 km for (a) linear
theory, dashed line, and (b) nonlinear theory (Long’s model),
solid line. The effective nonlinear topography has a height of
only 4 =~ 396 m. Note that the effect of the nonlinear lower
boundary condition is to produce a sharp increase in the strength
of the downslope flow to the lee of the mountain peak.
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FiG. 6. Evolution in time of the streamfunction from the nonlinear simulation. The back-
ground flow is homogeneous and the topography is bell-shaped with height # = 500 m. The
times are (a) 2400, (b) 3600, (c) 4800, (d) 6000, (e¢) 7200 and (f) 8400 s. Only about half of the
vertical extent of the domain is shown and the mesh is low resolution.

line on the figure is the linear steady-state predic-
tion of the surface drag and we see as in I that
the surface drag increases continuously as a func-
tion of time. The regime of physical amplification
follows the 200A¢ startup phase in which the up-
stream flow is accelerated uniformly from rest to
its steady 4 m s™! amplitude. Since At = 10 s this
startup phase is 33.3 min long (about three Brunt
periods) and is introduced to reduce the ampli-

tude of the transients generated by initialization
as discussed in I. For this model, amplification
ceases after about 900 time steps which is the
time at which the streamline reversal actually occurs.

We see, then, that for A > A, there is a transition
away from the low-drag state which is predicted
by linear theory and that this transition is inde-
pendent of resolution, independent of the near-
ness of the lateral boundaries, and more importantly
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FiG. 7. As in Fig. 6 at identical times but with high horizontal resolution.

it is not dependent on spurious effects due to the
parameterized diffusion introduced in I forA > A,.
We have previously shown that for A < A, and
in the limit  — « a steady state is eventually ob-
tained from the nonlinear time-dependent calcula-
tions which is essentially identical to that pre-
dicted by linear theory. We have also shown in I
that for A < A, the Reynolds stress in the interior
is nondivergent as it should be for sufficiently
small wave amplitude. The calculations described
here simply confirm the result obtained in I, that
for A = A, the linear solution becomes irrelevant

v

as it differs markedly from its nonlinear counter-
part. The surface drag in the nonlinear regime is
enormously in excess (~300%) of the linear predic-
tion even though the aspect ratio is only moderately
(~25%) in excess of the critical value predicted
by linear steady-state theory.

In Fig. 9 we show the evolution in time of the
nondimensional perturbation tangential wind speed
on the surface (uy — Ugy)/U, which is the nonlinear
analogue of the function M shown previously for
the linear model in Fig. 5. Note that the maximum
tangential wind speed in the lee is continuously
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increasing as a function of time and for the latest
time shown (~2.4 h) u'/U, is about 2.4 times the
linear maximum. The increase of the maximum
downslope wind speed above the linear prediction
is in accord with the amplification of the wave drag
(see Fig. 8). That this should be the case follows from
the definition D ,(0) = peu'w’. Since w' is fixed by
the lower boundary condition the growth of D ,(0)
implies a coherent growth of «' and this implies a
coherent growth of M = u'/U,. In the course of its
transition from the low-drag to the high-drag state
a downslope wind storm develops in the lee of the
tropography. The maximum wind speed 'in the late
times is seen by inspection of Fig. 9 to be on the
order of 12.5 m s™! which is in excess of three
times the mean flow speed. The storm generation
capability of the nonlinear model is thus clear.

Before considering the physical mechanism which
underlies the transition from the low-drag to the
high-drag regime we wish to further illustrate the
fact that this transition turns out to be rather abrupt.
We shall do this by calculating a quantity R(Fr,A)
which is a nondimensional measure of the rate at
which the surface drag grows following the 200 As
startup period. R is determined from the time evolu-
tion of the surface wave drag following startup ac-
cording to the definition

T (aDw(O)

D)\ ot ) ot

where t, = 200 Ar is the time at the end of the
startup phase of an experiment at fixed Fr and A,
and where 7 is the two-way group delay of the dis-

R(Fr,A) =

(40)

L ol
600 800 1000

n(at)

Fic. 8. Surface drag D.(0) as a function of time for the low- and high-
resolution simulations shown in Figs. 6 and 7, respectively. Time is measured
in the number () of timesteps (At = 10 s). Solid line is low resolution.

turbance between the ground and the first steepen-
ing level. The choice of the time scale = for non-
dimensionalization is essentially arbitrary but we do
wish momentarily to call attention to the long time
scale required to establish the region of reversed
streamlines and so the linear group delay between
this region and the ground is convenient.

To calculate R(Fr,A) we require v and this may
be obtained as follows. The Boussinesq form of the
plane wave dispersion relation is

NZ
2=k |

— -1
(()2

(41)

{4y UslAUo)

1 1 X
12t 141 16l 18]

Fi1G. 9. Evolution in time of the perturbation tangential wind
speed on the surface z = 0. This should be compared to the
appropriately scaled Long’s model result shown previously
in Fig. 5. Note the continuous increase in time of the downslope
wind maximum to the lee of the peak.



1510

T T
1of LT
. Fr=56.25
x/
8} / 4
6F B
@
al -
2F :
oL—x-—-x-_—-;-/_+______m_—_____--l
yl Ac 1
[0 K] A 2 3

Fic. 10. R(A) for fixed Froude number Fr =~ 56.25. A, is
\ the critical aspect ratio predicted by linear theory.

from which we may obtain the vertical component
of the group velocity as

dw —wk,

Y ok, (ke + kD)
The distance between the ground and the first
steepening level for a hydrostatic disturbance is
Zc = 3X./4, so that the length of the two-way path
is D= 3)\ /2 = 3a/k,. The two-way group delay
1s then

(42)

D 37r(k2+k2)

VGZ k. wk,
37 Fr.
- ) 43
o a%*k? “3)
For a hydrostatic disturbance k.2 = N*U%, thus

7 = 3mlw. Since the steady disturbance launched
by the mountain has o =k, U and since .the
dominant horizontal scale in the wave packet is
A= 2a/k, =~ 2a, in the hydrostatic regime we thus
have 7 = 3a/U. In the nonhydrostatic regime, as
Fr —.1%, k, — 0 and therefore from (44) 7 — «: In
the strongly nonhydrostatic regime we have found
no ev1dence of amplification, and jndeed, in this
regime (Fr < 1) the wave drag is identically zero.
In Fig. 10 we show a plot of R(Fr,A) at Fr = 56.25
for which the forced wave is moderately hydro-
static. The transition near A, is ratheér abrupt. In
the region A < A, the wave drag is very near the
linear prediction, while in the region A > A, the
wave drag in the long time limit is very much in
excess of linear.

Con\1paring Figs. 7 and 8 we note an additional
characteristic of the evolution of the disturbance
in the nonlinear regime. The time taken for the flow
to become fully developed at the first steepening
level z, = 3),/4 is about 900 At = 9 x 10 s. From
the preceding analysis, however, the one-way group
delay between z =0 and z =z, is t =~ 3a/2U
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| = 1.125 X 10% s. Clearly, in the nonlinear regime,

the time requxred for the flow to develop fully at a
given level is very much longer, than linear theory
would suggest. From the results in I, on the other
hand, the steady-state flow at a given level is estab-
lished on the liriear time scale if A < A.. The non-
linear regime is therefore characterized not only by a
marked increase in surface wave drag but also by an
equally marked stretching of the governing time
scale.

The first of these effects is explicable in terms of
Long’s model which applies to the homogeneous
flow which is of interest to us here and provides
an exact steady-state solution for subcritically
steepened waves. The essence of Long’s model is
that the solution of the linear wave equation
which satisfies the ‘‘nonlinear’ lower boundary

" condition is the exact solution to the complete

nonlinear steady-state problem. The extent to
which linear theory deviates from nonlinear theory
for the same obstacle may therefore be assessed
by determining the extent to which the linear
streamfunction (18) corresponds to the actual shape
of the topography. Inspection of Fig. 4 clearly
illustrates the idea. We have done linear theory for a
bell-shaped obstacle of height S00 m but the low-
level streamline has a net vertical deflection of
only about 396 m although it has approximately
maintained its bell-shaped form. This linear solu-
tion is therefore the complete nonlinear solution
for a bell-shaped mountain 396 m high. Since the

- drag for the bell-shaped topography depends on the

square of the mountain height we must expect
linear theory to underestimate the wave drag by a
factor of about (500/396)> = 1.6. Inspection of
Fig. 8 confirms that this is near the ratio of the
actual to the linear wave drag which obtains in
the long time limit. Miles and Huppert (1969) have
calculated exact Long’s model solutions for the
bell-shaped mouritain and their critical height h,
= 0.85U/N is very close to our underestimate. This
confirms that the effect of the distortion of the
mountain shape is unimportant in our calculations.

We can see why the discrepancy in wave drag
between linear theory and Long’s model becomes
large for aspect ratios in excess of that required to
produce critically steepened waves, by employ-
ing the results from second-order theory obtained
by MclIntyre (1972). His work shows that the first
nonlinear correction to the linear theory may be ob-
tained by redoing the linear problem using the new
topography h'(x) = h(x)(U + u’)/U, where u'(x)
is the perturbation horizontal velocity on z = 0
obtained in a linear calculation with topography
h(x) (MclIntyre, personal communication, 1978).
This topography is both higher than 4(x) and asym-
metric in a sense such that the surface drag is
enhanced (reduced slope upwind, increased slope
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downwind). This result suggests why the effect of
nonlinearity should become crucial when the wave
steepens to overturning. As the wave breaks,
u'/U becomes of order unity and at the first steepen-
inglevel |u'| < —|U]|. The second-order correction
to the topography, (u'/U)h(x), is then of the same
order as h(x) itself and higher order effects be-
come important. This does not demonstrate that the
transition from the linear to the nonlinear regime is
sharp but it does show that the transition should
occur for an aspect ratio near that which is required
to produce critically steepened waves. This is
strikingly confirmed by the nonlinear time-de-
pendent numerical calculations.

A second characteristic of the numerical solutions
which is explained by Long’s model is also evi-
dent on inspection of Figs. 4, 6 and 7. The effective
Long’s model solution not only corresponds to a
lower mountain height than that for which the
linear calculation was performed, but also the
topographic maximum is shifted upstream from its
linear location. As shown in Section 2, linear
hydrostatic theory predicts that the critical points
are located precisely over the topographic maximum
for symmetric topography and that the first is lo-
cated at a height z = 3A,/4. Fig. 4 shows that one
nonlinear effect of the lower boundary condition is
to shift the horizontal location of the critical point
with respect to the topographic maximum without
altering the height at which this region of the flow is
found. Inspection of Figs. 6 and 7 provides a very
nice numerical confirmation of this expected non-
linear effect. As will be shown in the next section,
this effect is also evident in nonhomogeneous
models.

We wish to return here to the point made above
regarding the sharpness of the transition from the
linear to the nonlinear regime as evidenced in the
numerical calculations of surface wave drag. In
Fig. 11 we have plotted surface drag versus aspect
ratio both for linear theory and for an approximate
version of Long’s model in which the mountain
height is correct but the shape correction is not in-
cluded, i.e., we have not iterated the solution to
find the exact linear topography which would corre-
spond through its associated low-level stream-
function to the desired physical form of the moun-
tain. Even though the Long’s mode! solutions are
not exact the data in Fig. 11 do show quite
clearly that the transition from the low-drag to the
high-drag regime is rather abrupt and occurs near A..

That Long’s model also explains the difference
between M from linear theory (dashed curve in
Fig. 5) and the equivalent downslope wind amplifica-
tion factor for the nonlinear model (Fig. 9) is seen
clearly in Fig. 5 (solid curve). To obtain the Long’s
model result in Fig. 5 we have simply interpolated
the u’', w data from the linear calculation onto the
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FiG. 11. Wave drag versus aspect ratio for linear theory
(dashed line) and for the approximate version of Long’s model
discussed in the text. Note that the discrepancy becomes large
forA = A..

low-level streamline and formed u; = [(1'2 + w?)2
— U,)/U, which is the tangential wind speed on the
surface which we should expect from a nonlinear
calculation with mountain height # =~ 396 m and
halfwidth ¢ = 3 km. The effect of the nonlinear
lower boundary condition is thus to produce a sharp
increase of the downslope wind maximum in the
lee of the peak when the aspect ratio of the topog-
raphy is near or in excess of critical. Again this is
strikingly confirmed by our nonliniear time-de-
pendent calculations.

The only characteristic of the nonlinear time-
dependent solutions for homogeneous flows which is
not explicable in terms of Long’s model is the pre-
viously noted long time scale required for the flow
to establish its fully developed form. Since Long’s
theory is explicitly a steady-state theory this should
not be too surprising. The explanation of the exist-
ence of this new time scale in the highly non-
linear regime is almost certainly due to the fact that
as the flow develops the lower boundary condition,
being nonlinear, is also changing. It should be possi-
ble to deduce the dependence of this time scale
analytically but we will not attempt to do so here.

The main point which we wish to make in conse-
quence of the results obtained in this section is
the following. The effect of the nonlinear lower
boundary condition in the mountain wave problem,
on the surface wave drag and therefore also on
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the momentum flux in the wave field, is extremely
important. Furthermore, the transition from the
linear or weakly nonlinear regime to the highly

nonlinear regime is rather abrupt as an increasing -

function of aspect ratio. In the nonlinear regime the
steady-state- wave drag is very much in excess of
the linear prediction, and related to this is the fact
that the strength of the downslope flow in the lee
of the topography is also enormously enhanced over
the associated linear strength. This suggests an
explanation of the phenomenon of ‘intense down-
slope wind storms in terms of nonlinearity, and this
explanation is clearly and fundamentally different
from that which has been advanced by Klemp
and Lilly (1975). It is doubtless true, however, that
both nonlinearity and inhomogeneity of the basic
state are simultaneously important and which effects
dominate will depend on the specific combination
of mean flow and topography which is under
consideration. The interactions between these
effects will be considered in the following sections.
One further point which we will mention briefly
here and return to later, concerns the numerical
methods which should be employed to simulate
mountain wave flows in the regime of strong non-
linearity. As we have shown previously, this regime
is characterized by flows in which reversed stream-
lines occur.. Sirice for high Reynolds number flows
streamlines are also isentropes, the region centered
about the wave-induced critical level is a reglon in
which the vertical gradient of temperature is super-
adiabatic. The regime of strong nonlinearity is
therefore strictly ‘inaccessible with a numerical
model which is written in terms of isentropic
coordinates, since the coordinate transformation is
undefined in the region where the wave breaks.
In Section 5 we will proceed to examine the ques-
tion-as to whether realistic atmospheric flows,
which are strongly inhomogeneous, should be

JOURNAL OF THE ATMOSPHERIC SCIENCES

‘has coordinates k =

VOLUME 36

how the effects of 1nhomogene1ty and nonlinearity
interact.

5. Downslope wind storms in a ‘‘standard’’ winter
atmosphere

In Fig. 12 we show the profiles of wind speed.
and temperature which will be employed for the
first simulation of transition from the low-drag to the
high-drag regime under realistic atmospheric condi-
tions. The temperature profile is for average mid-
latitude winter conditions and the wind field is for
the mean zonal flow (e.g., Newell et al., 1972). As
forcing we will employ bell.shaped topography with
variable height and fixed halfwidth a = 10 km.
Fig. 13 shows the power spectrum of the linear ¢
solution in wavenumber space for this forcing (with
h = 500 m) and background state. This is just the
kernel of the Fourier integral (16) multiplied by its
complex conjugate and suitably normalized. Notice-
able is the weak spectral peak near real wave-
number & = 6 x 10* m~! which is produced by the
weak excitation of a normal mode (lee wave) which
(6.01 x 107%,1.27 x 107%) m™*
in -the complex k-plane. That thls mode 'is not a
prominent feature of the complete linear solution
can be seen in Fig. 14 where we plot the free-stream
deflection £(x,z) obtained by fast Fourier inversion
of the complex k-spectrum as described in Sec-
tion 2. The linear solution is strongly dominated by
the freely propagating hydrostatic part of the
spectrum.

From the field £(x,z) we can compute the stability
index I, defined in (25) and since ¢ scales linearly
with the height & of the mountain we can deter-
mine the height 4. required to satisfy condition (26)
This gives 4. =~ 590 m and therefore the crifical
aspect ratio for this flow is A. = 0.059. Fig.- 15
illustrates the linear steady-state streamline pat-
tern for a slightly supercritical aspect ratio A

within the strongly nonlinear regime and, if so, = 0.0625 > A.. Note that the critical point again
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FiG. 12. Wind speed (a) and temperature (b) as a function of height for
average midlatitude winter conditions.
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Fi1G. 13. Wavenumber spectrum of the linear solution at height z ~ 4 km for
the midlatitude winter conditions shown in Fig. 13. The topographic forcing is
bell-shaped with a = 10 km and & = 500 m.

occurs at a height approximately 2 km above the
surface as for the simple homogeneous model de-
scribed in the last section. The integrated phase
shift between the ground and the wave-induced
critical layer is 3#/2 in agreement with Eq. (20).
Unlike the solution for the homogeneous flow shown
in Fig. 4, that for the inhomogeneous model does
not exhibit a sequence of equally spaced critical
points in the vertical. This is simply a consequence
of the increase of mean horizontal wind speed

with height which leads to a strong increase with
height of the local vertical wavelength. Although
Long’s model cannot be applied to this problem in
which the background flow is inhomogeneous, it is
nevertheless clear from Fig. 15 that many of the
characteristics of Long’s model solutions should
also obtain in this case. Inspection of the low-
level streamline shows that the effective nonlinear
topography is lower than that used for the linear
calculation and that the peak is shifted upstream

Z(KM)

u A
9[20 -90 -60

30 60 90 120

Fi1G. 14. Free-stream deflection £(x,z) for the standard midlatitude winter
model. Topography has a = 10 km, £ = 500 m.
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FiG. 15. Linear steady-state streamline pattern for the standard midlatitude
winter model. The topographic aspect ratio is slightly supercritical. Note the
overturned streamline at the critical height z, = 3A,/4.

from its linear location (x = 0). The critical point,
however, is still located immediately above x = 0
so that the two points are laterally displaced as for
the previous homogeneous flow.

It should be recognized that the critical aspect
ratio A, = 0.059 is rather small, in particular it
is smaller than the aspect ratio A = 0.2 of the
topography to the west of Boulder, Colorado (for
which ¢ = 10 km, # = 2 km). This region should
therefore be particularly susceptible to the occur-
rence of downslope wind storms according to
the nonlinear hypothesis for their formation and this
is observed to be the case. The same is true of the
topography of the Rocky Mountains in southern
Alberta to the west of the city of Calgary where the
frequency of occurrence of Chinook-type winds is
observed to be extremely high during the winter
months ' (Lester, 1976). .

In order to test the above predictions of linear
_ steady-state theory, we have initialized the non-
linear time-dependent model with the same mid-
latitude winter profiles of wind speed and stability.
In Fig. 16 we show a sequence of time slices through
the streamfunction field for supercritical conditions
with 4 = 1 km. For these numerical calculations
the domain is NAx-MAz, where N = 182, M
=/84, Ax = 10> m, Az = 341 m, so that the domain
is 180 km long and 30 km high. The time step is
At = 7.5s. Inspection of the figure confirms
that the streamline which enters the domain at a
height z = 2 km eventually reverses.

In Figs. 17a—-17c we show the temporal evolution
of the surface wave drag D,,(0) for three experiments

which differ only in the mountain height. In Fig. -
17a h = 500 m (linearly subcritical), while in
Figs. 17b and 17c the mountain heights are respec-
tively # =1 km and 2 = 1.4 km (both linearly
supercritical). On each figure the horizontal dashed
line is the prediction of linear steady-state theory.
We again note that in the (linearly) subcritical case
the wave drag shows no strong tendency to amplify
on a long time scale but does exhibit a weak
tendency to do so. Clearly, this is because, as in
the case of flows to which Long’s model applies,
linear theory provides an effectively nonlinear solu-
tion, but for a mountain whose height is lower than
that employed for the linear calculation.

The two experiments in the linearly supercritical
region (Figs. 18b and i8c) again show the strong
and continuous amplification which is characteristic
of the long time scale transition to the high-drag
state, just as for the homogeneous model. After an
elapsed time following startup of approximately 1.5 h
the surface drag for 4 = 1 km is in excess of three
times the linear prediction and the increased surface
drag is accompanied by a similar increase in the
tangential wind maximum to the lee of the peak.
In Fig. 18¢ for the &~ = 1.4 km case the wave drag
is more than six times larger than the linear predic-
tion and the maximum tangential wind speeds in
the lee are of hurricane force. It should be recalled
that this topography is still 600 m lower than that to
the west of Boulder!

Because of the complete absence of dissipation
in the flow, as time proceeds beyond the final
frame in Fig. 16 the coherence of the wave field
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FiG. 16. Nonlinear, time-dependent evolution of the streamline field for the standard mid-
latitude winter model. The bell-shaped topography has ¢ = 10 km, and 2 = 1 km. The times shown
are (a) 3000, (b) 3600, (c) 4200, (d) 4800, (e) 5400 and (f) 6000 s.

degrades near the steepening level (this will be
illustrated explicitly in Fig. 28) where the stream-
lines overturn. In this region where the tempera-
ture gradient becomes superadiabatic we expect that
the enhanced local mixing produced by convection
will eventually quell the amplification. In I we intro-
duced local mixing in this region via first-order
closure, while we have purposely avoided intro-
ducing any mixing in the present case so that the
transition to the high-drag regime could not be
attributed to it.

6. The transient evolution of nonlinear lee waves

In the last section we remarked on the existence
in the complete linear solution of a weakly excited
normal mode (lee wave). This normal mode may be
made a more prominent feature of the wave field by
forcing it with a narrower topography, the width
of which is matchéd more closely with the normal
mode wavelength. Alternatively, we may keep the
width of the topography fixed but alter the back-
ground profiles of wind speed and stability in such a
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Fi1G. 17. Evolution in time of the surface wave drag for three
nonlinear simulations with standard midlatitude winter back-
ground conditions. The ‘topography is befl-shaped with half-
width 10 km and the mountain heights are (a) 500 m, (b) 1 km
and (c¢) 1.4 km.

way that the wavelength of the normal mode in-

creases, and thereby achieve the same improved
match between the scale of the forcing and of the
mode. Here we follow the second route and employ
the new basic-state profiles shown in Fig. 18. In
Fig. 19 we illustrate the horizontal wavenumber
spectrum of the ¢ solution at a height z = 4 km
for bell-shaped topography with @ = 10 km and h
= 500 m as in the last section. We note the presence
in the power spectrum of a sharp line at k = 3.74
X 10~* m~! corresponding to a lee wave with hori-
zontal wavelength A = 16.8 km. Inspection of the
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secular function (17) in the complex k-plane shows
that the pole has coordinates k = (3.74 x 1074,
4.09 X 107%) m™! so that the downstream attenua-
tion is weak, the disturbance decaying by a factor
of ¢ in a distance on the order of 1.54 x 10 km.
Fast Fourier inversion of the wavenumber spectrum
gives the ¢(x,z) field shown in Fig. 20, which clearly
shows the dominant contribution of the lee wave to
the structure of the .wave field. Nonhydrostatic
effects are therefore extremely important in this
linear model.

In view of the nonlmear transition which we
have discussed in the past sections we should be
concerned that the nonlinear flow may depart
significantly from the linear version described
above. Again we may employ the linear steady-
state criterion (26) to estimate the transition point
and for this flow we obtain A, =~ 0.4. This implies
that a bell-shaped mountain with halfwidth ¢ = 10
km should be in excess of 4 km high if the linear
condition for transition is to be satisfied. For this
flow linear theory predicts that the nonlinear criti--
cal layer should form at z, = 11 km over the moun-
tain peak and this height satisfies the integral phase
shift condition (30) of WKB theory. Inspection of
Fig. 18 shows that the critical point is located just
above the tropopause. In Fig. 21 we illustrate the
linear streamfunction for slightly supercritical condi-
tions and inspection reveals overturned stream-
lines at height z = z.. This height is very much in
excess of the critical point height for either of the two
flows analyzed previously, which is due to the fact
that the wind intensity throughout the troposphere
(large) and the tropospheric stability (small) are such
that the mean vertical wavelength in the troposphere
is very much increased. The local vertical wave-
length sharply decreases in the stratosphere, how-
ever, so that the distance between the critical ’
pomt and the ground is still z, = 3\,/4, where
A. is the mean vertical wavelength in accord with
(30) as mentioned above. "

Before continuing with the discussion of the non-
linear evolution of the flow described above, there
are several points which we wish to make as
clearly as possible since these are critical to the
proper appreciation of the arguments which follow
in this and thé next section. First, we wish to point
out that the critical aspect ratio A, = 0.4 predicted
by linear theory ‘is large, very much larger than
those which obtained for the previously discussed
flows. This is a reflection of the fact that the aspect
ratio is not the best scaling length for discussions
of wave breaking. As shown by Miles and Huppert
(1969) the natural scale for homogeneous flows is the -
ratio of the mountain height 4 to the vertical hydro-
static wavelength U/N. Given, as pointed out in
the last section, that the nonlinearity of the lower
boundary condition contributes constructively



AugusTt 1979 W. R. PELTIER AND T. L. CLARK 1517
20 T L T T T T L T 1
(b)
15 F - - B
€
= 10f . L 4
~N
5 1t 1
O 1 1 1 1 1 1 R % 1
o] I0 20 30 40 50 60 200 220 240 260 280 300
u T(k)

Fig. 18. Wind speed (a) and temperature (b) as a function of height for
“‘extreme’’ midwinter conditions. The heavy line in (a) is the upstream wind profile
which accompanied the strong downslope windstorm at Boulder. The dashed
line describes the modification to it which will be employed in this section for

the lee wave simulation.

(Smith, 1977) to the steepening of the wave, we
may reasonably expect that the flow will enter the
strongly nonlinear regime for an aspect ratio con-
siderably lower than that predicted by linear theory
for the flow of interest to us here. Indeed, and as
shown in Section 7, this turns out to be the case.
The second point concerns the origin of the wind and
temperature profiles shown in Fig. 18. These are
from the Grand Junction sounding upstream of
Boulder on 11 January 1972 and are therefore the
background profiles which obtained during the
dramatic Boulder wind storm of that date (Lilly and
- Zipser, 1972). It should be immediately clear by in-
spection of the linear streamfunction shown pre-
viously that linear theory fails dramatically to pre-

dict the huge wave amplitudes which obtained
during this storm (see Fig. 27 in the next section
where the observed potential temperature field is
reproduced). In the next section we will show that
this storm is a consequence of nonlinear effects
which occur due to the actual breaking of the wave
in the lower stratosphere.

Here what we wish to do is modify the observed
basic wind profile in such a way that wave breaking
is suppressed. This. will allow us to first consider a
situation in which the nonlinear development of the
lee wave mode may be studied in isolation from the
instability. Clearly the simplest modification which
will prevent instability is to increase the asymptotic
stratospheric wind speed from the observed value
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F16. 19. Wavenumber spectrum of the linear inviscid solution for the ¢ field at the
height z =4 km. Note the sharp resonant line near wavenumber k = 3.75

X 10~ m™.
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.FIGV. 20. Free-stréam defléction £(x,z) for the extreme midwinter model.
The topography is bell-shaped with 2 = 10 km and & = 500 m. Note the down-
stream oscillation (lee wave) with wavelength A =~ 16.8 km.

Us; =20 m s™! to some larger value since it is in
the stratosphere that the critical level forms. Using
bell-shaped topography with @ = 10 km and & = 2
km in reasonable accord with the topography west
of Boulder, we have found that an asymptotic wind
speed of U, = 30.4 m s~ is sufficient to prevent

breaking during the development of the lee wave.
The complete wind profile to be employed in the
numerical experiments corresponds to theé dashed
line in Fig. 18 and the temperature profile is un-
changed from the observed. -

Fig. 22 shows the surface drag as a function of

Z(KM)

(o]
-120

X (KM)

Fig. 21. Linear streamfunction for slightly supercritical conditions. Note
the presence of overturned streamlines at the critical height z, = 11 km. Note
the large error in the streamfunction near the ground due to the assumed.linearity

of the surface boundary condition.
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time for the nonlinear experiment initialized with
these modified profiles. The mesh is NAx-MAz,
where N =256, M =84, Ax =500 m and Az
= 341 m, so that the domain is 128 km long and
~30 km high. The time step At = 7.5 s. Because of
the intensity of the response we have introduced
a small amount of background mixing with K,
constant everywhere in the domain. This increases
the numerical stability of the calculation but does
not lead to any significant attenuation of the wave.
Evident by inspection of Fig. 22 is the fact that
there is no tendency for amplification following the
initial startup period. Note, however, that although
there is no amplification for ¢+ > 200A¢ the surface
drag is very much in excess of the linear predic-
tion, in fact by a factor of about 6.

In Fig. 23 we show several time slices through
the-evolving vertical velocity field. This illustrates
very clearly the way in which the normal mode is
excited as a function of time through the process
of continuous partial reflection from the shear layer
and total reflection from the ground. The last
plate in this figure may be compared to Fig. 24 in
which we show the linear steady-state prediction
of the vertical velocity field. We note that the hori-
zontal wavelength of the lee wave in the nonlinear
model (A, = 17 km) is almost identical to that pre-
dicted by linear theory although the amplitude is
very much larger (maximum vertical velocity ~8
m s~! whereas the linear maximum is only ~1 m
s71). It appears, therefore, that the excitation
efficiency of the lee wave is strongly affected by
nonlinearity —the nonlinear efficiency being higher
than that suggested by linear theory (e.g., see
Smith, 1976).

To complete our discussion of this modified
flow in which the lee wave is such a prominent

o o —
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feature, we show in Fig. 25a the streamfunction
from the nonlinear calculation and for the latest
time. This may be compared with Fig. 21 from a
similar but supercritical linear calculation. An inter-
esting and important point to notice here is that
the nonlinear streamfield near the steepening
level at z, = 11 km just above the tropopause is
very close to overturning and the wave is therefore
about to break. This is true in spite of the fact that
the mountain height # = 2 km is about a factor of 4
smaller than the critical mountain height predicted
by linear theory for the modified flow. The near-
ness of the wave to breaking is also evident in the
isentrope field in Fig. 25b for the time correspond-
ing to the streamfunction. Fig. 25b may be compared
to Fig. 26, which shows the observed isentrope
field on the occasion of the 11 January 1972 wind-
storm at Boulder. The storm occurred in a back-
ground state which differed from that which we have
just employed for our lee wave simulation only in
that the stratospheric windspeed was 20 m s™!
rather than 30.4 m s™!. Yet comparing Figs. 25b
and 26, we see that they bear no resemblance
to one another at all. In the next section we shall
show that additional nonlinear effects which occur
when the wave breaks transform the structure
of the wavefield completely and thereby lead to
the formation of an intense downslope wind storm.

7. The 11 January 1972 severe downslope wind storm
in Boulder, Colorado

The observational data for this and similar wind
storms have been discussed many times by Lilly
and his co-workers in the past several years (e.g.,
Lilly and Zipser, 1972; Lilly and Kennedy, 1973;
Klemp and Lilly, 1975, 1978; Lilly, 1978; Smith,
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Fi1G. 22, Surface wave drag D ,(0) as a function of time for the extreme winter model
with the background wind profile modified as shown in Fig. 18.
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FiG. 23. Evolution of the vertical velocity field for the modified extreme wintér model. The times
are (a) 1500, (b) 2400, (c) 3150, (d) 3950, (e) 4750 and (f) 5450 s.

1977). It is not at all surprising that this wind storm
has been studied in the detail which it has, since
it is the only such intense storm. for which direct
in situ meéasurements of the structure of the wave-
field are available. Also available in the above
duoted articles are data concerning, the height
variations of wave momentum flux and turbulence
spectra (Lilly, 1978) of the small-scale fluctuations
which are associated with the wave itself. In spite
of the extent to which this stormi has been studied,
there has been no fully satisfactory explanation as
to why it occurred. We will show in this section that

this storm was producéd by a nonlinear amplifica-
tioni of the wave which occuiréd subsequent to its
breaking in the-lower stratosphere.

The observations which we have to explain are
reproduced here for convenience in Figs. 26 and 27
which show, respectively, the observed isentrope
field and 1sopleths of constant horizontal velocity
[for a detailed discussion se¢ Lilly (1978)]. To the
extent that the dissipatiofi in the wave system may be
considered small, the 1sentropes are eqiiivalent to
streamlines. It should be clear by .inspection of the
0 field for this disturbance that the flow is highly
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F1G. 24. Steady-state linear vertical velocity pattern for the extreme winter
model. This should be compared with Fig. 23f.

nonlinear since the vertical defiection of lines of
constant 6 is on the order of three times the maxi-
mum height of the topography. Also clear in the 6
field is the presence of some oscillating streamlines
to the lee of the peak in the low levels, indicating
that a trapped wave may also be present in the flow.
Allowance must of course be made for the fact that
the observations on which these figures were
based were not simultaneous so that individual
small-scale features of the flow should be inter-
preted with caution.

We must reiterate here the remarks made in I and
previously in the present paper regarding the diffi-
culty of describing the evolution of the mountain

wave in the strongly nonlinear regime where the
wave is breaking using a hydrostatic model
which is written in isentropic coordinates. When
the wave-induced critical level forms, it is a region
in which the vertical gradient of temperature is
locally superadiabatic. The transformation to
isentropic coordinates is then physically undefined.
It seems clear that this must strongly affect the
proper simulation of the evolution of the wave in
the regime of strong nonlinearity since, as we have
shown, strong nonlinearity is synonymous with the
occurrence of streamlines which are highly steepened.
Since the observed isentropes for the 11 January
1972 wavefield are steepened to the vertical, an
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Fi1G. 25. The streamfunction (a) and isentrope (b) fields for the modified extreme
winter case at time ¢ = 5450 s, corresponding to Fig. 23f.
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F1G. 26. Isentrope field for the 11 January 1972 severe wind storm in Boulder (after Lilly, 1978).

isentropic coordinate model should not be employed
to simulate these observations. The use of a hydro-
static model in the context of this storm may be
criticized from a second point of view. In the last
section we showed that the upstream profiles were
such as to support a rather intense lee wave and
that this lee wave completely dominates the linear
response. Since such disturbances are intrinsically
nonhydrostatic and since they should be present
in the response, we suggest that the hydrostatic
assumption for the description of the disturbance
is invalid a priori.

The numerical simulation of the Boulder wind
storm data will be described in terms of two.
separate experiments. For both of the experiments
the spatial domain is N Ax-M Az, where N = 256,
M =84, Ax = 500 m and Az = 341 m as in the last
section. The time step is At = 4 s and the topog-
raphy is bell-shaped witha = 10km,and 2 = 2 km.
The upstream profiles of wind speed and tempera-
ture are those shown in Fig. 18 so that the only
fundamental difference between the experiments to
be described here and those of the last section
concerns the stratospheric wind speed which is now
20 m s in the accord with the Grand Junction
sounding upstream of Boulder on 11 January 1972.
The two experiments we shall proceed to describe
differ from one another only with respect to the
manner in which mixing is treated.

In Fig. 28 we show a series of time slices through
the evolving potential temperature field for the first
simulation in which a small constant value of K, is °
assumed as for the lee wave simulation in the last
section. It is clear that a critical level forms just
above the tropopause (at z = 11 km) which is the
critical height predicted by linear theory. It is worth
repeating, however, ‘that the aspect ratio of the
topography is less, by a factor of 2, than the criti-
cal aspect ratio predicted by linear theory. This
effect, as stated before, is an effect of the non-
linear lower boundary condition. The most im-
portant characteristic of the result of this first at-
tempt to simulate the wind storm is clear from the
final frames in Fig. 28. As the wavé-induced critical
level develops, the coherence of the flow in this re-
gion degrades rapidly. This is a direct consequence
of the fact that the flow in this region has become
convectively unstable and the spatial and temporal
resolution of the model are insufficient to resolve
the secondary ‘‘turbulent”” motions which ensue.
In spite of the loss of coherence, however, the
large-scale characteristics of the flow are develop-
ing as they must do if the main features of the ob-
served wave field are to be successfully accounted
for. Note, in particular, that the tropopause is
beginning to fall immediately overhead of the topo-
graphic maximum. The calculation suggests that the
flow in the lower stratosphere, in the vicinity of
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the critical level, should be highly turbulent and
this was observed to be the case during the 1972
Boulder wind storm (Lilly, 1978). In order to be
able to follow the development of the mountain
wave signal further in time, beyond the time of
critical-level formation, we must include the dif-
fusive effects of the unresolved turbulent motions
which are engendered by physical instability of the
resolved scales. In I we employed a first-order
closure scheme for this purpose and we return to
this approach here.

In Fig. 29 we show a sequence of snapshots of
the potential temperature field from the second
simulation of the Boulder wind storm. For this
calculation the mixing coefficients in the domain
interior were calculated on the basis of the first-
order closure scheme suggested by Lilly (1962)
and previously employed in I. We determined
K,,, the mixing coefficient for momentum in (26),
from

K, = (kAY|Def|(1 — Ri)"? (44)
for Ri = 1, where Ri is the local value of the gradient
Richardson number defined as Ri = (gd Inf/dz)/
(Def)?, where (Def)® = (D2 + D,,?)/2 + D,3® and
D;; is the deformation tensor. In (44) A is the grid
resolution defined as A = (Ax-Az)Y? and k is a nu-
merical constant which is consistent with the Kol-
mogoroff turbulence spectrum for & = 0.21. For the
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eddy Prandtl number we assumed Pr = K,,/K, = 1,
where K is the eddy diffusion coefficient for heat.

The time sequence shown in Fig. 29 begins
slightly prior to the end of that shown in Fig. 28
with sufficient overlap to demonstrate the dramatic
effect which mixing has near the critical level.
Inspection of Fig. 29 shows that subsequent to the
breaking of the wave in the lower stratosphere,
the magnitude of the downward deflection of the
tropopause increases continuously. In the last
frame shown this deflection is on the order of 6 km
and comparison with the observed field in Fig. 26
reveals a striking similarity. Indeed the differences
between theory and observation are sufficiently
small that they should be explicable for the most
part in terms of differences between the actual and
model topography. In Fig. 30 we show the stream-
function corresponding to the last frame in Fig.
29. This picture reveals clearly the consequence
of the large deflection of the tropopause. Note
that the maximally deflected streamline achieves
its maximum deflection just to the lee of the
mountain peak and that this streamline enters
the upstream boundary of the domain near tropo-
pause height. Since the streamtube bounded above
by this streamline and below by the ground has a
marked reduction of cross-sectional area to the
lee of the peak, it is clear that the wind speed in
this region must be extremely high. The unstable
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1972 severe windstorm in Boulder (after Lilly, 1978).
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' Fi1G. 28. Isentrope field for first Boulder wind storm simulation with small constant eddy
mixing coefficient. Times shown are (a) 1600, (b) 2240, (c) 2880, (d) 3520, (e) 4160 and (f) 4800 s.
Note the incoherence of the fields developing in the latest times as the wave breaks.

growth of the wave in the troposphere produces a
focusing of the horizontal wind maximum to the
lee of the peak.

This effect is clearly revealed in Fig. 31 where we
illustrate the evolution in time of the total horizontal
velocity field. The time sequence is the same as that
in Fig. 29. The last frame in this figure should be

compared with the observed field shown in Fig. 27.
Again the qualitative and quantitative similarity is
striking (the second closed velocity contour to the
lee of the peak corresponds to a wind speed of
58 m s~!, which is within a few percent of the ob-
served maximum). In Fig. 32 we show the evolu-
tion in time of the surface wave drag for this calcula-
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FiG. 29. Isentrope fields for the second Boulder wind storm simulation in which the mixing
coefficients are determined through first-order closure. The times shown are (a) 3200, (b) 4160,
(c) 5120, (d) 6020, (¢) 7040 and (f) 8000 s. Fig. 29b overlaps with Fig. 28e. Note the extreme

defiection of the tropopause in the last frame.

tion. The time at which the mountain wave begins
to break in the lower stratosphere is marked on
the figure. Until this time the flow has a form
which is similar to that obtained for the modified
mean state discussed in the last section. Subse-
quent to breaking, the disturbance in the lower
troposphere begins to amplify in time and the sur-

face wave drag triples between this time and the
time ¢ = 2000 Atr at which we ceased calculation.
The final surface drag is in all nearly 20 times higher
than the linear prediction.

It seems clear to us that, in order to account for
this final and crucial stage of wave amplification
which occurs subsequent to breaking in the lower
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F16. 30. Streamlines corresponding to the isentrope
. field in Fig. 29f.

stratosphere, we are obliged to invoke a strong
reflection of the mountain wave disturbance from the
region of wave breaking and turbulence. After the
critical region forms, wave energy which is inci-
dent upon it from below is strongly reflected;
leading eventually to a sharp decrease in Reynolds
stress .above the tropopause and a quasi-resonart
amplification of the wave between this region and
the ground, which is somewhat reminiscent of
previous work on the stability of parallel flows
(Davis and Peltier, 1976, 1977). The sharp decrease
- of Reynolds stress above the tropopause is a char-
acteristic feature of the observations (Lilly, 1978)
and also of our model simulation of them. We
are therefore suggesting that, at least for the 11
January 1972 windstorm, the supercritical steepen-
mg and subsequent breaking of the mountain wave
in the lower stratosphere played a fundamental
dynamical role in the phenomenon. This suggestion
is strongly reinforced by the numerical calculations
which we have just described.

8. Summary and conclusions

In the preceding sections we have attempted to
explore in some detail the range of nonlinear
effects ‘which may occur in mountain wave flows.
These nonlinear effects may be divided into two
classes depending upon whether they may occur
only in inhomogeneous flows or whether they also

exist when the upstream profiles of wind speed and

temperature are constant. In .the latter case
Long’s model applies and appears to explain most of
the effects observed in our time- dependent nu-
merical calculatlons including the sharp increase
in wave drag observed when the flow is such that
streamlines over the mountain crest are steepened
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to vertical. Long’s model, of course, cannot explain
the long time scale which governs the approach to
the Long solution in the strongly nonlinear regime.
This is almost certainly due to the time dependence
of the boundary condition in this regime and should
be extractable analytically through application of
two timing methods. To- our knowledge, this long
time scale which appears to govern the approach to
the highly nonlinear Long’s model states has not
been observed previously.

Even for inhomogeneous flows, such as the-
standard winter model described in Section §, the
dominant nonlinear effects may still be those which
would be expected on the basis of Long’s model
type calculations even though Long’s model does
not strictly apply to such flows. In the regime of
strong nonlinearity where the streamlines are
supercritically steepened, the wave drag on the sur-
face is enormously in excess of that which would be
predicted on the basis of linear theory. This effect
is very important to the phenomenon of strong
downslope wind storms since the high-drag states
are characterized by a marked increase in the
maximumn tangential wind speed to the lee of the peak.

Inhomogeneous models may exhibit additional
nonlinear phenomena beyond those which - are
understandable in terms of Long’s model when
nonhydrostatic effects become sufficiently im-
portant. We illustrated the first of these effects in
Section 6 by doing a nonlinear calculation for a
combination of mean flow and topography for which
linear theory predicted the existence of-a strong
resonant lee wave. The nonlinear calculation not
only confirmed the existence of the lee wave in
the nonlinear solution but clearly showed that the
amplitude of the nonlinear lee wave was very much
longer than that predicted by linear theory. It
therefore seems that both the hydrostatic and
the nonhydrostatic portions of the wave spec-
trum are enhanced by the nonlinearity when the
forcing topography is symmetric. This will almost
certainly not be the case forasymmetric topography.
That the lee wave amplitude is enhanced by non--
linearity has not been previously demonstrated
theoretically although Smith (1976) has commented
on the possibility from an observational point of
view. The numerical simulation of the nonlinear lee
wave in Section 6 is the first, to our knowledge,
which has been accomplished with a proper radia-
tion upper boundary condition so that the modes
which develop are intrinsic to the stratification and
are not simply the normal modes of the box in
which the numerical calculation is performed.

In Section 7 we showed that further nonlinear
effects due to nonhydrostaticity may occur in
inhomogeneous models when the mountain wave
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Fic. 31. Total horizontal velocity field for the Boulder wind storm simulation. Times shown
are (a) 3200, (b) 4160, (c) 5120, (d) 6020, (e) 7040 and (f) 8000 s. The contour interval is 8 m s~ ..
In (f) the horizontal wind maximum in the lee of the peak is in excess of 60 m s™'.

actually breaks. Clearly, the convective instability
of the wave in the vicinity of the steepening level
will be realized only in a nonhydrostatic model
where the vertical component of the inertial force
may be nonzero. That this instability was realized

in our two-dimensional model was shown explicitly
by the complete loss of coherence locally as the
streamline overturned. When the wave breaks in a
realistic atmospheric model and if the point of
breaking is located just above the tropopause
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FIG 32 Siirface wave drag as a function of time for the Boulder wind storm \
simulation. The time step Ar = 4 s. The time marked 2 is the time at which criti-
cal steepemng is achieved in the lower strdtosphere.

then the mountaln wave becomes trapped between
the ground and the: level of overturning which
subsequently ‘acts as a Strong reflector of wave
energy incident from below. The wave then pro-
cedes to amplify in this cavity and the Reynolds
stress drops to zero above the point of super-
critical steepening. This rather complex process
appears to have been responsible for the occur-
rence of the intense downslope wind storm at
Boulder, Colorado, on 11 January 1972 as is well
illustrated by our successful numerical simulation of
-all of the main features' of the observed wave
ﬁeld using as input only the upstream soundings of
horizontal wind speed -and temperature and an
admittedly crude approximation to the actual
topography. The model appears to have consider-
able skill as a forecast tool although it would be a
rather expensive one!

As mentioned in the Introduction, the existence
of such intense nonlinear effects in the mountain
wave problem as those which have been docu-
mented here raises several important questions
concerning the problem of parameterlzmg the
effect -of mountain wave drag in atmospheric
general circulation models (Lilly, 1972). Current
parameterization schemes all make use of the. notion
of a Reynolds stress drop through a linear critical
level (height at which a reversal in meéan wind
direction occiirs). Such calculations of the stress
drop have been described by Bretherton (1969).
There are two fundameéntal problems with this idea

which are worthy of consideration on the basis of the
results discussed here. The first of these concerns
the validity of linear theory in estimating the stress
drop. As we have shown, the surface wave drag and
therefore also the momentum flux in the wave field
may be very much greater than linear theory would
suggest. - Linear theory will therefore provide an
underestimate of the deceleration of thé mean
flow produced by wave absorption at the critical
level because it underestimates the momentum
flux produced by a given topography More im-
portant, it seems .to us, is the fact that linear
theory predicts no stress drop unless a linear critical
level exists —a fact which follows from the Eliassen-
Palm (1960) theorem for stationary waves of
sufficiently small amplitude. The work in the present
paper shows quite clearly that there may be 4 laige
stress drop across the nonlinear wave-induced
critical layer. If we employ a linear parameteriza-
tion scheme to estimate the wave mean flow interac-
tion and thus the contribution of the wave field to .
the tendency of the resolved synoptic-scale flow,
then we will predict no effect under just those
conditions when the wave amplitudes and thus the
associated momentum transport are largest. It seems
clear to us that this must introduce appreciable -
error.
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REFERENCES

Blumen, W., 1970: Momentum flux by mountain waves in a
stratified rotating atmosphere. J. Atmos. Sci., 22, 529534,

——, and C. D. McGregor, 1976: Wave drag by three-
dimensional mountain lee waves in non-planar shear flow.
Tellus, 27, 287-298.

Bretherton, F. P., 1969: Momentum transport by gravity waves.
Quart. J. Roy. Meteor. Soc., 95, 213-243,

Clark, T. L., 1977: A small scale numerical model using a
terrain following coordinate system. J. Comput. Phys.,
24, 186-215.

——, and W. R. Peltier, 1977: On the evolution and stability of
finite amplitude mountain waves. J. Atrmos. Sci., 34, 1715-
1730.

Davis, P. A., and W. R. Peltier, 1976: Resonant parallel shear
instability in the stably stratified - planetary boundary
layer. J. Atmos. Sci., 33, 1287-1300.

——, and ——, 1977: Effects of dissipation upon parallel
shear instability near the ground. J. Atmos. Sci., 34,
1868-1884.

Eliassen, A., and E. Palm, 1960: On the transfer of energy in
stationary mountain waves. Geofys. Publ., 22, 1-23.

Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a
co-ordinate transformation for the solution of the Navier-
Stokes equations. J. Comput. Phys., 17, 209-228.

Hines, C. O., and C. A. Reddy, 1967: On the propagation
of atmospheric gravity waves through regions of wind shear.
J. Geophys. Res., 72, 1015-1034.
Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave
induced downslope winds. J. Atmos. Sci., 32, 320-339.
——, and ——, 1978: Numerical simulation of hydrostatic
mountain waves. J. Atmos. Sci., 35, 78-107.

Lester, P. F., 1976: Evidence of long lee waves in southern
Alberta. Atzmosphere, 14, No. 1, 28-36.

Lilly, D. K., 1962: On the numerical simulation of buoyant
convection. Tellus, 14, 145-172.

W. R. PELTIER AND T. L. CLARK

1529

——, 1972: Wave momentum flux—a GARP problem. Bull.
Amer. Meteor. Soc., 53, 17-23.

——, 1978: A severe downslope windstorm and aircraft
turbulence induced by a mountain wave. J. Atmos. Sci.,
35, 59-77.

——, and E. J. Zipser, 1972: The front range windstorm
of 11 January 1972—a meteorological narrative. Weather-
wise, 25, 56—63.

——, and P. J. Kennedy, 1973: Observations of a stationary
mountain wave and its associated momentum flux and energy
dissipation. J. Atmos. Sci., 30, 1135-1152.

Long, R. R., 1972: Finite amplitude disturbances in the flow
of inviscid rotating and stratified fluids over obstacles.
Annual Review of Fluid Mechanics, Vol. 4, Annual Re-
views, Inc., 69-92.

MclIntyre, M. E., 1972: On Long’s hypothesis of no upstream
influence in uniformly stratified or rotating flow. J. Fluid
Mech., 52, 209-243.

Miles, J. W., 1969: Waves and wave drag in stratified flows.
Proc. 12th Int. Congress Applied Mechanics, Hetenyi
and Vincenti, Eds., Springer-Verlag, 52-76.

——, and H. E. Huppert, 1969: Lee waves in a stratified flow.
Part 4. Perturbation approximations. J. Fluid Mech., 38,
497-525. .

Newell, R. E., J. W. Kidson, D. G. Vincent and G. J. Boer,
1972: The General Circulation of the Tropical Atmosphere
and Interactions With Extra-Tropical Latitudes. The MIT
Press, 258 pp.

Orlanski, 1., 1976: A simple boundary condition for unbounded
hyperbolic flows. J. Comput. Phys., 21, 251.

Smagorinski, J., 1963: General circulation experiments with the
primitive equations: I. The basic experiment. Mon. Wea.
Rev., 91, 99-164.

Smith, R. B., 1976: The generation of lee waves by the Blue
Ridge. J. Atmos. Sci., 33, 507-519.

——, 1977: The steepening of hydrostatic mountain waves.
J. Atmos. Sci., 34, 1634—1654.

Vergeiner, 1., 1971: An operational linear lee wave model for
arbitrary basic flow and two dimensional topography.
Quart. J. Roy. Meteor. Soc., 97, 30-56.



